Neural Markov Logic Networks

ICLR 2020  ·  Giuseppe Marra, Ondřej Kuželka ·

We introduce neural Markov logic networks (NMLNs), a statistical relational learning system that borrows ideas from Markov logic. Like Markov logic networks (MLNs), NMLNs are an exponential-family model for modelling distributions over possible worlds, but unlike MLNs, they do not rely on explicitly specified first-order logic rules. Instead, NMLNs learn an implicit representation of such rules as a neural network that acts as a potential function on fragments of the relational structure. Similarly to many neural symbolic methods, NMLNs can exploit embeddings of constants but, unlike them, NMLNs work well also in their absence. This is extremely important for predicting in settings other than the transductive one. We showcase the potential of NMLNs on knowledge-base completion, triple classification and on generation of molecular (graph) data.

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here