Neural Network Out-of-Distribution Detection for Regression Tasks

ICLR 2020 Anonymous

Neural network out-of-distribution (OOD) detection aims to identify when a model is unable to generalize to new inputs, either due to covariate shift or anomalous data. Most existing OOD methods only apply to classification tasks, as they assume a discrete set of possible predictions... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.