Neural Network Support Vector Detection via a Soft-Label, Hybrid K-Means Classifier

11 Feb 2016Robert A. Murphy

We use random geometric graphs to describe clusters of higher dimensional data points which are bijectively mapped to a (possibly) lower dimensional space where an equivalent random cluster model is used to calculate the expected number of modes to be found when separating the data of a multi-modal data set into distinct clusters. Furthermore, as a function of the expected number of modes and the number of data points in the sample, an upper bound on a given distance measure is found such that data points have the greatest correlation if their mutual distances from a common center is less than or equal to the calculated bound... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet