Neural Policy Gradient Methods: Global Optimality and Rates of Convergence

ICLR 2020  ·  Lingxiao Wang, Qi Cai, Zhuoran Yang, Zhaoran Wang ·

Policy gradient methods with actor-critic schemes demonstrate tremendous empirical successes, especially when the actors and critics are parameterized by neural networks. However, it remains less clear whether such "neural" policy gradient methods converge to globally optimal policies and whether they even converge at all. We answer both the questions affirmatively in the overparameterized regime. In detail, we prove that neural natural policy gradient converges to a globally optimal policy at a sublinear rate. Also, we show that neural vanilla policy gradient converges sublinearly to a stationary point. Meanwhile, by relating the suboptimality of the stationary points to the representation power of neural actor and critic classes, we prove the global optimality of all stationary points under mild regularity conditions. Particularly, we show that a key to the global optimality and convergence is the "compatibility" between the actor and critic, which is ensured by sharing neural architectures and random initializations across the actor and critic. To the best of our knowledge, our analysis establishes the first global optimality and convergence guarantees for neural policy gradient methods.

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here