Neural Ray Surfaces for Self-Supervised Learning of Depth and Ego-motion

Self-supervised learning has emerged as a powerful tool for depth and ego-motion estimation, leading to state-of-the-art results on benchmark datasets. However, one significant limitation shared by current methods is the assumption of a known parametric camera model -- usually the standard pinhole geometry -- leading to failure when applied to imaging systems that deviate significantly from this assumption (e.g., catadioptric cameras or underwater imaging)... (read more)

Results in Papers With Code
(↓ scroll down to see all results)