Neural Rays for Occlusion-aware Image-based Rendering

We present a new neural representation, called Neural Ray (NeuRay), for the novel view synthesis task. Recent works construct radiance fields from image features of input views to render novel view images, which enables the generalization to new scenes. However, due to occlusions, a 3D point may be invisible to some input views. On such a 3D point, these generalization methods will include inconsistent image features from invisible views, which interfere with the radiance field construction. To solve this problem, we predict the visibility of 3D points to input views within our NeuRay representation. This visibility enables the radiance field construction to focus on visible image features, which significantly improves its rendering quality. Meanwhile, a novel consistency loss is proposed to refine the visibility in NeuRay when finetuning on a specific scene. Experiments demonstrate that our approach achieves state-of-the-art performance on the novel view synthesis task when generalizing to unseen scenes and outperforms per-scene optimization methods after finetuning.

PDF Abstract CVPR 2022 PDF CVPR 2022 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.