Neural Sketch Learning for Conditional Program Generation

We study the problem of generating source code in a strongly typed, Java-like programming language, given a label (for example a set of API calls or types) carrying a small amount of information about the code that is desired. The generated programs are expected to respect a "realistic" relationship between programs and labels, as exemplified by a corpus of labeled programs available during training. Two challenges in such conditional program generation are that the generated programs must satisfy a rich set of syntactic and semantic constraints, and that source code contains many low-level features that impede learning. We address these problems by training a neural generator not on code but on program sketches, or models of program syntax that abstract out names and operations that do not generalize across programs. During generation, we infer a posterior distribution over sketches, then concretize samples from this distribution into type-safe programs using combinatorial techniques. We implement our ideas in a system for generating API-heavy Java code, and show that it can often predict the entire body of a method given just a few API calls or data types that appear in the method.

PDF Abstract ICLR 2018 PDF ICLR 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here