Diversifying Neural Text Generation with Part-of-Speech Guided Softmax and Sampling

COLING 2022  ·  Zhixian Yang, Pengxuan Xu, Xiaojun Wan ·

Neural text generation models are likely to suffer from the low-diversity problem. Various decoding strategies and training-based methods have been proposed to promote diversity only by exploiting contextual features, but rarely do they consider incorporating syntactic structure clues. In this work, we propose using linguistic annotation, i.e., part-of-speech (POS), to guide the text generation. In detail, we introduce POS Guided Softmax to explicitly model two posterior probabilities: (i) next-POS, and (ii) next-token from the vocabulary of the target POS. A POS Guided Sampling strategy is further proposed to address the low-diversity problem by enriching the diversity of POS. Extensive experiments and human evaluations show that, compared with existing state-of-the-art methods, our POS Guided Softmax and Sampling (POSG) can generate more diverse text while maintaining comparable quality.

PDF Abstract COLING 2022 PDF COLING 2022 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.