Neuro-algorithmic Policies enable Fast Combinatorial Generalization

15 Feb 2021  ·  Marin Vlastelica, Michal Rolínek, Georg Martius ·

Although model-based and model-free approaches to learning the control of systems have achieved impressive results on standard benchmarks, generalization to task variations is still lacking. Recent results suggest that generalization for standard architectures improves only after obtaining exhaustive amounts of data. We give evidence that generalization capabilities are in many cases bottlenecked by the inability to generalize on the combinatorial aspects of the problem. Furthermore, we show that for a certain subclass of the MDP framework, this can be alleviated by neuro-algorithmic architectures. Many control problems require long-term planning that is hard to solve generically with neural networks alone. We introduce a neuro-algorithmic policy architecture consisting of a neural network and an embedded time-dependent shortest path solver. These policies can be trained end-to-end by blackbox differentiation. We show that this type of architecture generalizes well to unseen variations in the environment already after seeing a few examples.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here