Neurobiology and Changing Ecosystems: toward understanding the impact of anthropogenic influences on neurons and circuits

14 Oct 2022  ·  Angie Michaiel, Amy Bernard ·

Rapid anthropogenic environmental changes, including those due to habitat contamination, degradation, and climate change, have far-reaching effects on biological systems that may outpace animals' adaptive responses (Radchuk et al., 2019). Neurobiological systems mediate interactions between animals and their environments and evolved over millions of years to detect and respond to change. To gain an understanding of the adaptive capacity of nervous systems given and unprecedented pace of environmental change, mechanisms of physiology and behavior at the cellular and biophysical level must be examined. While behavioral changes resulting from anthropogenic activity are becoming increasingly described, identification and examination of the cellular, molecular, and circuit-level processes underlying those changes are profoundly under-explored. Hence, the field of neuroscience lacks predictive frameworks to describe which neurobiology systems may be resilient or vulnerable to rapidly changing ecosystems, or what modes of adaptation are represented in our natural world. In this review, we highlight examples of animal behavior modification and corresponding nervous system adaptation in response to rapid environmental change. The underlying cellular, molecular, and circuit-level component processes underlying these behaviors are not known and emphasize the unmet need for rigorous scientific enquiry into the neurobiology of changing ecosystems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here