Existing multi-agent reinforcement learning (MARL) communication methods have relied on a trusted third party (TTP) to distribute reward to agents, leaving them inapplicable in peer-to-peer environments. This paper proposes reward distribution using {\em Neuron as an Agent} (NaaA) in MARL without a TTP with two key ideas: (i) inter-agent reward distribution and (ii) auction theory. Auction theory is introduced because inter-agent reward distribution is insufficient for optimization. Agents in NaaA maximize their profits (the difference between reward and cost) and, as a theoretical result, the auction mechanism is shown to have agents autonomously evaluate counterfactual returns as the values of other agents. NaaA enables representation trades in peer-to-peer environments, ultimately regarding unit in neural networks as agents. Finally, numerical experiments (a single-agent environment from OpenAI Gym and a multi-agent environment from ViZDoom) confirm that NaaA framework optimization leads to better performance in reinforcement learning.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here