Neuronal Spike Generation Mechanism as an Oversampling, Noise-shaping A-to-D converter

We explore the hypothesis that the neuronal spike generation mechanism is an analog-to-digital converter, which rectifies low-pass filtered summed synaptic currents and encodes them into spike trains linearly decodable in post-synaptic neurons. To digitally encode an analog current waveform, the sampling rate of the spike generation mechanism must exceed its Nyquist rate... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet