Neuroscience-inspired online unsupervised learning algorithms

5 Aug 2019  ·  Cengiz Pehlevan, Dmitri B. Chklovskii ·

Although the currently popular deep learning networks achieve unprecedented performance on some tasks, the human brain still has a monopoly on general intelligence. Motivated by this and biological implausibility of deep learning networks, we developed a family of biologically plausible artificial neural networks (NNs) for unsupervised learning. Our approach is based on optimizing principled objective functions containing a term that matches the pairwise similarity of outputs to the similarity of inputs, hence the name - similarity-based. Gradient-based online optimization of such similarity-based objective functions can be implemented by NNs with biologically plausible local learning rules. Similarity-based cost functions and associated NNs solve unsupervised learning tasks such as linear dimensionality reduction, sparse and/or nonnegative feature extraction, blind nonnegative source separation, clustering and manifold learning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here