Neurosymbolic artificial intelligence via large language models and coherence-driven inference
We devise an algorithm to generate sets of propositions that objectively instantiate graphs that support coherence-driven inference. We then benchmark the ability of large language models (LLMs) to reconstruct coherence graphs from (a straightforward transformation of) propositions expressed in natural language, with promising results from a single prompt to models optimized for reasoning. Combining coherence-driven inference with consistency evaluations by neural models may advance the state of the art in machine cognition.
PDF AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here