New Reinforcement Learning Using a Chaotic Neural Network for Emergence of "Thinking" - "Exploration" Grows into "Thinking" through Learning -

16 May 2017 Katsunari Shibata Yuki Goto

Expectation for the emergence of higher functions is getting larger in the framework of end-to-end reinforcement learning using a recurrent neural network. However, the emergence of "thinking" that is a typical higher function is difficult to realize because "thinking" needs non fixed-point, flow-type attractors with both convergence and transition dynamics... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet