Newton-type Methods for Inference in Higher-Order Markov Random Fields

Linear programming relaxations are central to {\sc map} inference in discrete Markov Random Fields. The ability to properly solve the Lagrangian dual is a critical component of such methods. In this paper, we study the benefit of using Newton-type methods to solve the Lagrangian dual of a smooth version of the problem. We investigate their ability to achieve superior convergence behavior and to better handle the ill-conditioned nature of the formulation, as compared to first order methods. We show that it is indeed possible to efficiently apply a trust region Newton method for a broad range of {\sc map} inference problems. In this paper we propose a provably convergent and efficient framework that includes (i) excellent compromise between computational complexity and precision concerning the Hessian matrix construction, (ii) a damping strategy that aids efficient optimization, (iii) a truncation strategy coupled with a generic pre-conditioner for Conjugate Gradients, (iv) efficient sum-product computation for sparse clique potentials. Results for higher-order Markov Random Fields demonstrate the potential of this approach.

PDF Abstract CVPR 2017 PDF CVPR 2017 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here