Neyman-Pearson classification: parametrics and sample size requirement

7 Feb 2018Xin TongLucy XiaJiacheng WangYang Feng

The Neyman-Pearson (NP) paradigm in binary classification seeks classifiers that achieve a minimal type II error while enforcing the prioritized type I error controlled under some user-specified level $\alpha$. This paradigm serves naturally in applications such as severe disease diagnosis and spam detection, where people have clear priorities among the two error types... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet