NID-SLAM: Robust Monocular SLAM Using Normalised Information Distance

We propose a direct monocular SLAM algorithm based on the Normalised Information Distance (NID) metric. In contrast to current state-of-the-art direct methods based on photometric error minimisation, our information-theoretic NID metric provides robustness to appearance variation due to lighting, weather and structural changes in the scene. We demonstrate successful localisation and mapping across changes in lighting with a synthetic indoor scene, and across changes in weather (direct sun, rain, snow) using real-world data collected from a vehicle-mounted camera. Our approach runs in real-time on a consumer GPU using OpenGL, and provides comparable localisation accuracy to state-of-the-art photometric methods but significantly outperforms both direct and feature-based methods in robustness to appearance changes.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here