NLPMM: a Next Location Predictor with Markov Modeling

16 Mar 2020  ·  Meng Chen, Yang Liu, Xiaohui Yu ·

In this paper, we solve the problem of predicting the next locations of the moving objects with a historical dataset of trajectories. We present a Next Location Predictor with Markov Modeling (NLPMM) which has the following advantages: (1) it considers both individual and collective movement patterns in making prediction, (2) it is effective even when the trajectory data is sparse, (3) it considers the time factor and builds models that are suited to different time periods. We have conducted extensive experiments in a real dataset, and the results demonstrate the superiority of NLPMM over existing methods.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here