No bad local minima: Data independent training error guarantees for multilayer neural networks

26 May 2016  ·  Daniel Soudry, Yair Carmon ·

We use smoothed analysis techniques to provide guarantees on the training loss of Multilayer Neural Networks (MNNs) at differentiable local minima. Specifically, we examine MNNs with piecewise linear activation functions, quadratic loss and a single output, under mild over-parametrization. We prove that for a MNN with one hidden layer, the training error is zero at every differentiable local minimum, for almost every dataset and dropout-like noise realization. We then extend these results to the case of more than one hidden layer. Our theoretical guarantees assume essentially nothing on the training data, and are verified numerically. These results suggest why the highly non-convex loss of such MNNs can be easily optimized using local updates (e.g., stochastic gradient descent), as observed empirically.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here