Noise-Blind Image Deblurring

CVPR 2017  ·  Meiguang Jin, Stefan Roth, Paolo Favaro ·

We present a novel approach to noise-blind deblurring, the problem of deblurring an image with known blur, but unknown noise level. We introduce an efficient and robust solution based on a Bayesian framework using a smooth generalization of the 0-1 loss. A novel bound allows the calculation of very high-dimensional integrals in closed form. It avoids the degeneracy of Maximum a-Posteriori (MAP) estimates and leads to an effective noise-adaptive scheme. Moreover, we drastically accelerate our algorithm by using Majorization Minimization (MM) without introducing any approximation or boundary artifacts. We further speed up convergence by turning our algorithm into a neural network termed GradNet, which is highly parallelizable and can be efficiently trained. We demonstrate that our noise-blind formulation can be integrated with different priors and significantly improves existing deblurring algorithms in the noise-blind and in the known-noise case. Furthermore, GradNet leads to state-of-the-art performance across different noise levels, while retaining high computational efficiency.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.