Noise Is Also Useful: Negative Correlation-Steered Latent Contrastive Learning

CVPR 2022  ·  Jiexi Yan, Lei Luo, Chenghao Xu, Cheng Deng, Heng Huang ·

How to effectively handle label noise has been one of the most practical but challenging tasks in Deep Neural Networks (DNNs). Recent popular methods for training DNNs with noisy labels mainly focus on directly filtering out samples with low confidence or repeatedly mining valuable information from low-confident samples. %to further modify DNNs. However, they cannot guarantee the robust generalization of models due to the ignorance of useful information hidden in noisy data. To address this issue, we propose a new effective method named as LaCoL (Latent Contrastive Learning) to leverage the negative correlations from the noisy data. Specifically, in label space, we exploit the weakly-augmented data to filter samples and adopt classification loss on strong augmentations of the selected sample set, which can preserve the training diversity. While in metric space, we utilize weakly-supervised contrastive learning to excavate these negative correlations hidden in noisy data. Moreover, a cross-space similarity consistency regularization is provided to constrain the gap between label space and metric space. Extensive experiments have validated the superiority of our approach over existing state-of-the-art methods.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods