Noisy Agents: Self-supervised Exploration by Predicting Auditory Events

27 Jul 2020  ·  Chuang Gan, Xiaoyu Chen, Phillip Isola, Antonio Torralba, Joshua B. Tenenbaum ·

Humans integrate multiple sensory modalities (e.g. visual and audio) to build a causal understanding of the physical world. In this work, we propose a novel type of intrinsic motivation for Reinforcement Learning (RL) that encourages the agent to understand the causal effect of its actions through auditory event prediction. First, we allow the agent to collect a small amount of acoustic data and use K-means to discover underlying auditory event clusters. We then train a neural network to predict the auditory events and use the prediction errors as intrinsic rewards to guide RL exploration. Experimental results on Atari games show that our new intrinsic motivation significantly outperforms several state-of-the-art baselines. We further visualize our noisy agents' behavior in a physics environment and demonstrate that our newly designed intrinsic reward leads to the emergence of physical interaction behaviors (e.g. contact with objects).

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here