NOMA for Energy-Efficient LiFi-Enabled Bidirectional IoT Communication

20 May 2020  ·  Chen Chen, Shu Fu, Xin Jian, Min Liu, Xiong Deng, Zhiguo Ding ·

In this paper, we consider a light fidelity (LiFi)-enabled bidirectional Internet of Things (IoT) communication system, where visible light and infrared light are used in the downlink and uplink, respectively. In order to improve the energy efficiency (EE) of the bidirectional LiFi-IoT system, non-orthogonal multiple access (NOMA) with a quality-of-service (QoS)-guaranteed optimal power allocation (OPA) strategy is applied to maximize the EE of the system. We derive a closed-form OPA set based on the identification of the optimal decoding orders in both downlink and uplink channels, which can enable low-complexity power allocation. Moreover, we propose an adaptive channel and QoS-based user pairing approach by jointly considering users' channel gains and QoS requirements. We further analyze the EE of the bidirectional LiFi-IoT system and the user outage probabilities (UOPs) of both downlink and uplink channels of the system. Extensive analytical and simulation results demonstrate the superiority of NOMA with OPA in comparison to orthogonal multiple access (OMA) and NOMA with typical channel-based power allocation strategies. It is also shown that the proposed adaptive channel and QoS-based user pairing approach greatly outperforms individual channel/QoS-based approaches, especially when users have diverse QoS requirements.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here