Non-asymptotic bounds for percentiles of independent non-identical random variables

24 Aug 2018  ·  Dong Xia ·

This note displays an interesting phenomenon for percentiles of independent but non-identical random variables. Let $X_1,\cdots,X_n$ be independent random variables obeying non-identical continuous distributions and $X^{(1)}\geq \cdots\geq X^{(n)}$ be the corresponding order statistics. For any $p\in(0,1)$, we investigate the $100(1-p)$%-th percentile $X^{(pn)}$ and prove non-asymptotic bounds for $X^{(pn)}$. In particular, for a wide class of distributions, we discover an intriguing connection between their median and the harmonic mean of the associated standard deviations. For example, if $X_k\sim\mathcal{N}(0,\sigma_k^2)$ for $k=1,\cdots,n$ and $p=\frac{1}{2}$, we show that its median $\big|{\rm Med}\big(X_1,\cdots,X_n\big)\big|= O_P\Big(n^{1/2}\cdot\big(\sum_{k=1}^n\sigma_k^{-1}\big)^{-1}\Big)$ as long as $\{\sigma_k\}_{k=1}^n$ satisfy certain mild non-dispersion property.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here