Non-linear Metric Learning

NeurIPS 2012 Dor KedemStephen TyreeFei ShaGert R. LanckrietKilian Q. Weinberger

In this paper, we introduce two novel metric learning algorithms, χ2-LMNN and GB-LMNN, which are explicitly designed to be non-linear and easy-to-use. The two approaches achieve this goal in fundamentally different ways: χ2-LMNN inherits the computational benefits of a linear mapping from linear metric learning, but uses a non-linear χ2-distance to explicitly capture similarities within histogram data sets; GB-LMNN applies gradient-boosting to learn non-linear mappings directly in function space and takes advantage of this approach's robustness, speed, parallelizability and insensitivity towards the single additional hyper-parameter... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet