Non-linear motor control by local learning in spiking neural networks

ICML 2018  ·  Aditya Gilra, Wulfram Gerstner ·

Learning weights in a spiking neural network with hidden neurons, using local, stable and online rules, to control non-linear body dynamics is an open problem. Here, we employ a supervised scheme, Feedback-based Online Local Learning Of Weights (FOLLOW), to train a network of heterogeneous spiking neurons with hidden layers, to control a two-link arm so as to reproduce a desired state trajectory. The network first learns an inverse model of the non-linear dynamics, i.e. from state trajectory as input to the network, it learns to infer the continuous-time command that produced the trajectory. Connection weights are adjusted via a local plasticity rule that involves pre-synaptic firing and post-synaptic feedback of the error in the inferred command. We choose a network architecture, termed differential feedforward, that gives the lowest test error from different feedforward and recurrent architectures. The learned inverse model is then used to generate a continuous-time motor command to control the arm, given a desired trajectory.

PDF Abstract ICML 2018 PDF ICML 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here