Non-Negative Kernel Sparse Coding for the Classification of Motion Data

10 Mar 2019  ·  Babak Hosseini, Felix Hülsmann, Mario Botsch, Barbara Hammer ·

We are interested in the decomposition of motion data into a sparse linear combination of base functions which enable efficient data processing. We combine two prominent frameworks: dynamic time warping (DTW), which offers particularly successful pairwise motion data comparison, and sparse coding (SC), which enables an automatic decomposition of vectorial data into a sparse linear combination of base vectors. We enhance SC as follows: an efficient kernelization which extends its application domain to general similarity data such as offered by DTW, and its restriction to non-negative linear representations of signals and base vectors in order to guarantee a meaningful dictionary. Empirical evaluations on motion capture benchmarks show the effectiveness of our framework regarding interpretation and discrimination concerns.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods