Non-Orthogonal Multiple Access (NOMA) With Multiple Intelligent Reflecting Surfaces

31 Oct 2020  ·  Yanyu Cheng, Kwok Hung Li, Yuanwei Liu, Kah Chan Teh, George K. Karagiannidis ·

In this paper, non-orthogonal multiple access (NOMA) networks assisted by multiple intelligent reflecting surfaces (IRSs) with discrete phase shifts are investigated, in which each user device (UD) is served by an IRS to improve the quality of the received signal. Two scenarios are considered according to whether there is a direct link between the base station (BS) and each UD, and the outage performance is analyzed for each of them. Specifically, the asymptotic expressions for the upper and lower bounds of the outage probability in the high signal-to-noise ratio (SNR) regime are derived. Following that, the diversity order is obtained. It is shown that the use of discrete phase shifts does not degrade diversity order. More importantly, simulation results reveal that a 3-bit resolution for discrete phase shifts is sufficient to achieve near-optimal outage performance. Simulation results also imply the superiority of IRSs over full-duplex decode-and-forward relays.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here