Non-parametric cumulants approach for outlier detection of multivariate financial data

18 May 2023  ·  Francesco Cesarone, Rosella Giacometti, Jacopo Maria Ricci ·

In this paper, we propose an outlier detection algorithm for multivariate data based on their projections on the directions that maximize the Cumulant Generating Function (CGF). We prove that CGF is a convex function, and we characterize the CGF maximization problem on the unit n-circle as a concave minimization problem. Then, we show that the CGF maximization approach can be interpreted as an extension of the standard principal component technique. Therefore, for validation and testing, we provide a thorough comparison of our methodology with two other projection-based approaches both on artificial and real-world financial data. Finally, we apply our method as an early detector for financial crises.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here