Non-rigid 3D Shape Registration using an Adaptive Template

21 Mar 2018  ·  Hang Dai, Nick Pears, William Smith ·

We present a new fully-automatic non-rigid 3D shape registration (morphing) framework comprising (1) a new 3D landmarking and pose normalisation method; (2) an adaptive shape template method to accelerate the convergence of registration algorithms and achieve a better final shape correspondence and (3) a new iterative registration method that combines Iterative Closest Points with Coherent Point Drift (CPD) to achieve a more stable and accurate correspondence establishment than standard CPD. We call this new morphing approach Iterative Coherent Point Drift (ICPD)... Our proposed framework is evaluated qualitatively and quantitatively on three datasets and compared with several other methods. The proposed framework is shown to give state-of-the-art performance. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here