Non-stationary Linear Bandits Revisited

9 Mar 2021  ·  Peng Zhao, Lijun Zhang ·

In this note, we revisit non-stationary linear bandits, a variant of stochastic linear bandits with a time-varying underlying regression parameter. Existing studies develop various algorithms and show that they enjoy an $\widetilde{O}(T^{2/3}(1+P_T)^{1/3})$ dynamic regret, where $T$ is the time horizon and $P_T$ is the path-length that measures the fluctuation of the evolving unknown parameter. However, we discover that a serious technical flaw makes the argument ungrounded. We revisit the analysis and present a fix. Without modifying original algorithms, we can prove an $\widetilde{O}(T^{3/4}(1+P_T)^{1/4})$ dynamic regret for these algorithms, slightly worse than the rate as was anticipated. We also show some impossibility results for the key quantity concerned in the regret analysis. Note that the above dynamic regret guarantee requires an oracle knowledge of the path-length $P_T$. Combining the bandit-over-bandit mechanism, we can also achieve the same guarantee in a parameter-free way.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here