Nonconvex Zeroth-Order Stochastic ADMM Methods with Lower Function Query Complexity

30 Jul 2019  ·  Feihu Huang, Shangqian Gao, Jian Pei, Heng Huang ·

Zeroth-order (a.k.a, derivative-free) methods are a class of effective optimization methods for solving complex machine learning problems, where gradients of the objective functions are not available or computationally prohibitive. Recently, although many zeroth-order methods have been developed, these approaches still have two main drawbacks: 1) high function query complexity; 2) not being well suitable for solving the problems with complex penalties and constraints. To address these challenging drawbacks, in this paper, we propose a class of faster zeroth-order stochastic alternating direction method of multipliers (ADMM) methods (ZO-SPIDER-ADMM) to solve the nonconvex finite-sum problems with multiple nonsmooth penalties. Moreover, we prove that the ZO-SPIDER-ADMM methods can achieve a lower function query complexity of $O(nd+dn^{\frac{1}{2}}\epsilon^{-1})$ for finding an $\epsilon$-stationary point, which improves the existing best nonconvex zeroth-order ADMM methods by a factor of $O(d^{\frac{1}{3}}n^{\frac{1}{6}})$, where $n$ and $d$ denote the sample size and data dimension, respectively. At the same time, we propose a class of faster zeroth-order online ADMM methods (ZOO-ADMM+) to solve the nonconvex online problems with multiple nonsmooth penalties. We also prove that the proposed ZOO-ADMM+ methods achieve a lower function query complexity of $O(d\epsilon^{-\frac{3}{2}})$, which improves the existing best result by a factor of $O(\epsilon^{-\frac{1}{2}})$. Extensive experimental results on the structure adversarial attack on black-box deep neural networks demonstrate the efficiency of our new algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods