Nonlinear Cooperative Control of Double Drone-Bar Transportation System

15 Nov 2020  ·  Peng Zhang, Yongchun Fang, Xiao Liang, He Lin, Wei He ·

Due to the limitation of the drone's load capacity, various specific tasks need to be accomplished by multiple drones in collaboration. In some transportation tasks, two drones are required to lift the load together, which brings even more significant challenges to the control problem because the transportation system is underactuated and it contains very complex dynamic coupling. When transporting bar-shaped objects, the load's attitude, the rope's swing motion, as well as the distance between the drones, should be carefully considered to ensure the security of the system. So far, few works have been implemented for double drone transportation systems to guarantee their transportation performance, especially in the aforementioned aspect. In this paper, a nonlinear cooperative control method is proposed, with both rigorous stability analysis and experimental results demonstrating its great performance. Without the need to distinguish the identities between the leader and the follower, the proposed method successfully realizes effective control for the two drones separately, mainly owning to the deep analysis for the system dynamics and the elaborate design for the control law. By utilizing Lyapunov techniques, the proposed controller achieves simultaneous positioning and mutual distance control of the drones, meanwhile, it efficiently eliminates the swing of the load. Flight experiments are presented to demonstrate the performance of the proposed nonlinear cooperative control strategy.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Dynamical Systems Systems and Control Systems and Control