Nonlinear Cooperative Output Regulation with Input Delay Compensation

8 Sep 2024  ·  Shiqi Zheng, Choon Ki Ahn, Xiaowei Jiang, Huaicheng Yan, Peng Shi ·

This paper investigates the cooperative output regulation (COR) of nonlinear multi-agent systems (MASs) with long input delay based on periodic event-triggered mechanism. Compared with other mechanisms, periodic event-triggered control can automatically guarantee a Zeno-free behavior and avoid the continuous monitoring of triggered conditions. First, a new periodic event-triggered distributed observer, which is based on the fully asynchronous communication data, is proposed to estimate the leader information. Second, a new distributed predictor feedback control method is proposed for the considered nonlinear MASs with input delay. By coordinate transformation, the MASs are mapped into new coupled ODE-PDE target systems with some disturbance-like terms. Then, we show that the COR problem is solvable. At last, to further save the communication resource, a periodic event-triggered mechanism is considered in the sensor-to-controller transmission in every agent. A new periodic event-triggered filter is proposed to deal with the periodic event-triggered feedback data. The MASs with input delay are mapped into coupled ODE-PDE target systems with sampled data information. Then, Lyapunov-Krasovskii functions are constructed to demonstrate the exponential stability of the MASs. Simulations verify the validity of the proposed results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here