Nonstationary Multivariate Gaussian Processes for Electronic Health Records

13 Oct 2019Rui MengBraden SoperHerbert LeeVincent X. LiuJohn D. GreenePriyadip Ray

We propose multivariate nonstationary Gaussian processes for jointly modeling multiple clinical variables, where the key parameters, length-scales, standard deviations and the correlations between the observed output, are all time dependent. We perform posterior inference via Hamiltonian Monte Carlo (HMC)... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet