Norm-Ranging LSH for Maximum Inner Product Search

Neyshabur and Srebro proposed Simple-LSH, which is the state-of-the-art hashing method for maximum inner product search (MIPS) with performance guarantee. We found that the performance of Simple-LSH, in both theory and practice, suffers from long tails in the 2-norm distribution of real datasets. We propose Norm-ranging LSH, which addresses the excessive normalization problem caused by long tails in Simple-LSH by partitioning a dataset into multiple sub-datasets and building a hash index for each sub-dataset independently. We prove that Norm-ranging LSH has lower query time complexity than Simple-LSH. We also show that the idea of partitioning the dataset can improve other hashing based methods for MIPS. To support efficient query processing on the hash indexes of the sub-datasets, a novel similarity metric is formulated. Experiments show that Norm-ranging LSH achieves an order of magnitude speedup over Simple-LSH for the same recall, thus significantly benefiting applications that involve MIPS.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here