Nuclei Segmentation via a Deep Panoptic Model with Semantic Feature Fusion

Automated detection and segmentation of individual nuclei in histopathology images is important for cancer diagnosis and prognosis. Due to the high variability of nuclei appearances and numerous overlapping objects, this task still remains challenging. eep learning based semantic and instance segmentation models have been proposed to address the challenges, but these methods tend to concentrate on either the global or local features and hence still suffer from information loss. In this work, we propose a panoptic segmentation model which incorporates an auxiliary semantic segmentation branch with the instance branch to integrate global and local features. Furthermore, we design a feature map fusion mechanism in the instance branch and a new mask generator to prevent information loss. Experimental results on three different histopathology datasets demonstrate that our method outperforms the state-of-the-art nuclei segmentation methods and popular semantic and instance segmentation models by a large margin.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here