Numerical Integration on Graphs: where to sample and how to weigh

19 Mar 2018  ·  George C. Linderman, Stefan Steinerberger ·

Let $G=(V,E,w)$ be a finite, connected graph with weighted edges. We are interested in the problem of finding a subset $W \subset V$ of vertices and weights $a_w$ such that $$ \frac{1}{|V|}\sum_{v \in V}^{}{f(v)} \sim \sum_{w \in W}{a_w f(w)}$$ for functions $f:V \rightarrow \mathbb{R}$ that are `smooth' with respect to the geometry of the graph. The main application are problems where $f$ is known to somehow depend on the underlying graph but is expensive to evaluate on even a single vertex. We prove an inequality showing that the integration problem can be rewritten as a geometric problem (`the optimal packing of heat balls'). We discuss how one would construct approximate solutions of the heat ball packing problem; numerical examples demonstrate the efficiency of the method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here