Oblivious Sampling Algorithms for Private Data Analysis

NeurIPS 2019  ·  Sajin Sasy, Olga Ohrimenko ·

We study secure and privacy-preserving data analysis based on queries executed on samples from a dataset. Trusted execution environments (TEEs) can be used to protect the content of the data during query computation, while supporting differential-private (DP) queries in TEEs provides record privacy when query output is revealed. Support for sample-based queries is attractive due to \emph{privacy amplification} since not all dataset is used to answer a query but only a small subset. However, extracting data samples with TEEs while proving strong DP guarantees is not trivial as secrecy of sample indices has to be preserved. To this end, we design efficient secure variants of common sampling algorithms. Experimentally we show that accuracy of models trained with shuffling and sampling is the same for differentially private models for MNIST and CIFAR-10, while sampling provides stronger privacy guarantees than shuffling.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here