ObPose: Leveraging Pose for Object-Centric Scene Inference in 3D

7 Jun 2022  ·  Yizhe Wu, Oiwi Parker Jones, Ingmar Posner ·

We present ObPose, an unsupervised object-centric inference and generation model which learns 3D-structured latent representations from RGB-D scenes. Inspired by prior art in 2D representation learning, ObPose considers a factorised latent space, separately encoding object location (where) and appearance (what). ObPose further leverages an object's pose (i.e. location and orientation), defined via a minimum volume principle, as a novel inductive bias for learning the where component. To achieve this, we propose an efficient, voxelised approximation approach to recover the object shape directly from a neural radiance field (NeRF). As a consequence, ObPose models each scene as a composition of NeRFs, richly representing individual objects. To evaluate the quality of the learned representations, ObPose is evaluated quantitatively on the YCB and CLEVR datatasets for unsupervised scene segmentation, outperforming the current state-of-the-art in 3D scene inference (ObSuRF) by a significant margin. Generative results provide qualitative demonstration that the same ObPose model can both generate novel scenes and flexibly edit the objects in them. These capacities again reflect the quality of the learned latents and the benefits of disentangling the where and what components of a scene. Key design choices made in the ObPose encoder are validated with ablations.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here