Obstacle Detection Quality as a Problem-Oriented Approach to Stereo Vision Algorithms Estimation in Road Situation Analysis

In this work we present a method for performance evaluation of stereo vision based obstacle detection techniques that takes into account the specifics of road situation analysis to minimize the effort required to prepare a test dataset. This approach has been designed to be implemented in systems such as self-driving cars or driver assistance and can also be used as problem-oriented quality criterion for evaluation of stereo vision algorithms...

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet