Off-policy Learning with Eligibility Traces: A Survey

15 Apr 2013  ·  Matthieu Geist, Bruno Scherrer ·

In the framework of Markov Decision Processes, off-policy learning, that is the problem of learning a linear approximation of the value function of some fixed policy from one trajectory possibly generated by some other policy. We briefly review on-policy learning algorithms of the literature (gradient-based and least-squares-based), adopting a unified algorithmic view. Then, we highlight a systematic approach for adapting them to off-policy learning with eligibility traces. This leads to some known algorithms - off-policy LSTD(\lambda), LSPE(\lambda), TD(\lambda), TDC/GQ(\lambda) - and suggests new extensions - off-policy FPKF(\lambda), BRM(\lambda), gBRM(\lambda), GTD2(\lambda). We describe a comprehensive algorithmic derivation of all algorithms in a recursive and memory-efficent form, discuss their known convergence properties and illustrate their relative empirical behavior on Garnet problems. Our experiments suggest that the most standard algorithms on and off-policy LSTD(\lambda)/LSPE(\lambda) - and TD(\lambda) if the feature space dimension is too large for a least-squares approach - perform the best.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here