Off-Policy Meta-Reinforcement Learning Based on Feature Embedding Spaces

Meta-reinforcement learning (RL) addresses the problem of sample inefficiency in deep RL by using experience obtained in past tasks for a new task to be solved. However, most meta-RL methods require partially or fully on-policy data, i.e., they cannot reuse the data collected by past policies, which hinders the improvement of sample efficiency. To alleviate this problem, we propose a novel off-policy meta-RL method, embedding learning and evaluation of uncertainty (ELUE). An ELUE agent is characterized by the learning of a feature embedding space shared among tasks. It learns a belief model over the embedding space and a belief-conditional policy and Q-function. Then, for a new task, it collects data by the pretrained policy, and updates its belief based on the belief model. Thanks to the belief update, the performance can be improved with a small amount of data. In addition, it updates the parameters of the neural networks to adjust the pretrained relationships when there are enough data. We demonstrate that ELUE outperforms state-of-the-art meta RL methods through experiments on meta-RL benchmarks.

PDF Abstract ICML Workshop 2020 PDF ICML Workshop 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here