Off-Policy Policy Gradient with State Distribution Correction

17 Apr 2019Yao LiuAdith SwaminathanAlekh AgarwalEmma Brunskill

We study the problem of off-policy policy optimization in Markov decision processes, and develop a novel off-policy policy gradient method. Prior off-policy policy gradient approaches have generally ignored the mismatch between the distribution of states visited under the behavior policy used to collect data, and what would be the distribution of states under the learned policy... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet