Offline RL With Realistic Datasets: Heteroskedasticity and Support Constraints

2 Nov 2022  ·  Anikait Singh, Aviral Kumar, Quan Vuong, Yevgen Chebotar, Sergey Levine ·

Offline reinforcement learning (RL) learns policies entirely from static datasets, thereby avoiding the challenges associated with online data collection. Practical applications of offline RL will inevitably require learning from datasets where the variability of demonstrated behaviors changes non-uniformly across the state space. For example, at a red light, nearly all human drivers behave similarly by stopping, but when merging onto a highway, some drivers merge quickly, efficiently, and safely, while many hesitate or merge dangerously. Both theoretically and empirically, we show that typical offline RL methods, which are based on distribution constraints fail to learn from data with such non-uniform variability, due to the requirement to stay close to the behavior policy to the same extent across the state space. Ideally, the learned policy should be free to choose per state how closely to follow the behavior policy to maximize long-term return, as long as the learned policy stays within the support of the behavior policy. To instantiate this principle, we reweight the data distribution in conservative Q-learning (CQL) to obtain an approximate support constraint formulation. The reweighted distribution is a mixture of the current policy and an additional policy trained to mine poor actions that are likely under the behavior policy. Our method, CQL (ReDS), is simple, theoretically motivated, and improves performance across a wide range of offline RL problems in Atari games, navigation, and pixel-based manipulation.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods