On a generalization of the Jensen-Shannon divergence and the JS-symmetrization of distances relying on abstract means

8 Apr 2019  ·  Frank Nielsen ·

The Jensen-Shannon divergence is a renown bounded symmetrization of the unbounded Kullback-Leibler divergence which measures the total Kullback-Leibler divergence to the average mixture distribution. However the Jensen-Shannon divergence between Gaussian distributions is not available in closed-form. To bypass this problem, we present a generalization of the Jensen-Shannon (JS) divergence using abstract means which yields closed-form expressions when the mean is chosen according to the parametric family of distributions. More generally, we define the JS-symmetrizations of any distance using generalized statistical mixtures derived from abstract means. In particular, we first show that the geometric mean is well-suited for exponential families, and report two closed-form formula for (i) the geometric Jensen-Shannon divergence between probability densities of the same exponential family, and (ii) the geometric JS-symmetrization of the reverse Kullback-Leibler divergence. As a second illustrating example, we show that the harmonic mean is well-suited for the scale Cauchy distributions, and report a closed-form formula for the harmonic Jensen-Shannon divergence between scale Cauchy distributions. We also define generalized Jensen-Shannon divergences between matrices (e.g., quantum Jensen-Shannon divergences) and consider clustering with respect to these novel Jensen-Shannon divergences.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here