On Almost Sure Convergence Rates of Stochastic Gradient Methods

9 Feb 2022  ·  Jun Liu, Ye Yuan ·

The vast majority of convergence rates analysis for stochastic gradient methods in the literature focus on convergence in expectation, whereas trajectory-wise almost sure convergence is clearly important to ensure that any instantiation of the stochastic algorithms would converge with probability one. Here we provide a unified almost sure convergence rates analysis for stochastic gradient descent (SGD), stochastic heavy-ball (SHB), and stochastic Nesterov's accelerated gradient (SNAG) methods. We show, for the first time, that the almost sure convergence rates obtained for these stochastic gradient methods on strongly convex functions, are arbitrarily close to their optimal convergence rates possible. For non-convex objective functions, we not only show that a weighted average of the squared gradient norms converges to zero almost surely, but also the last iterates of the algorithms. We further provide last-iterate almost sure convergence rates analysis for stochastic gradient methods on weakly convex smooth functions, in contrast with most existing results in the literature that only provide convergence in expectation for a weighted average of the iterates.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here