On anthropomorphic decision making in a model observer

30 Jun 2015Ali R. N. AvanakiKathryn S. EspigTom R. L. KimpeAndrew D. A. Maidment

By analyzing human readers' performance in detecting small round lesions in simulated digital breast tomosynthesis background in a location known exactly scenario, we have developed a model observer that is a better predictor of human performance with different levels of background complexity (i.e., anatomical and quantum noise). Our analysis indicates that human observers perform a lesion detection task by combining a number of sub-decisions, each an indicator of the presence of a lesion in the image stack... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet