On Approximate Inference for Generalized Gaussian Process Models

25 Nov 2013  ·  Lifeng Shang, Antoni B. Chan ·

A generalized Gaussian process model (GGPM) is a unifying framework that encompasses many existing Gaussian process (GP) models, such as GP regression, classification, and counting. In the GGPM framework, the observation likelihood of the GP model is itself parameterized using the exponential family distribution (EFD). In this paper, we consider efficient algorithms for approximate inference on GGPMs using the general form of the EFD. A particular GP model and its associated inference algorithms can then be formed by changing the parameters of the EFD, thus greatly simplifying its creation for task-specific output domains. We demonstrate the efficacy of this framework by creating several new GP models for regressing to non-negative reals and to real intervals. We also consider a closed-form Taylor approximation for efficient inference on GGPMs, and elaborate on its connections with other model-specific heuristic closed-form approximations. Finally, we present a comprehensive set of experiments to compare approximate inference algorithms on a wide variety of GGPMs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods